skip to main content

Title: DARK SECTOR COUPLING BENDS THE SUPERCLUSTERS

Galaxy clusters exhibit a noticeably anisotropic pattern in their clustering, which is vividly manifested by the presence of rich filament-like superclusters. The more anisotropic the clustering of galaxy clusters is, the more straight the rich filament-like superclusters become. Given that the degree of the anisotropy in the largest-scale clustering depends sensitively on the nature of dark energy, the supercluster straightness may play a complimentary role in testing dynamic dark energy models. Here, we focus on the coupled dark energy (cDE) models which assume the existence of dark sector coupling between scalar field dark energy and nonbaryonic dark matter. By determining the spines of the superclusters identified in the publicly available group catalogs from the COupled Dark Energy Cosmological Simulations for four different cDE models as well as for the ΛCDM model, we quantify the straightness of each supercluster as the spatial extent of its spine per member cluster, where a supercluster spine represents the main stem of the minimal spanning tree constructed out of the member clusters. It is shown that the dark sector coupling plays a role in making the supercluster less straight relative to the ΛCDM case and that in a cDE model with supergravity potential the superclustersmore » are least straight. We also find that the difference in the degree of the supercluster straightness between the cDE and the ΛCDM cases increases with redshift. A physical interpretation of our result as well as its cosmological implication are discussed.« less
Authors:
;  [1]
  1. Astronomy program, Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of)
Publication Date:
OSTI Identifier:
22270643
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 777; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ANISOTROPY; ASTRONOMY; ASTROPHYSICS; COSMOLOGY; COUPLING; GALAXY CLUSTERS; NONLUMINOUS MATTER; POTENTIALS; RED SHIFT; SCALAR FIELDS; SUPERGRAVITY; UNIVERSE