skip to main content

Title: PREDICTING MERGER-INDUCED GAS MOTIONS IN ΛCDM GALAXY CLUSTERS

In the hierarchical structure formation model, clusters of galaxies form through a sequence of mergers and continuous mass accretion, which generate significant random gas motions especially in their outskirts where material is actively accreting. Non-thermal pressure provided by the internal gas motions affects the thermodynamic structure of the X-ray emitting intracluster plasma and introduces biases in the physical interpretation of X-ray and Sunyaev-Zeldovich effect observations. However, we know very little about the nature of gas motions in galaxy clusters. The ASTRO-H X-ray mission, scheduled to launch in 2015, will have a calorimeter capable of measuring gas motions in galaxy clusters at the level of ∼< 100 km s{sup –1}. In this work, we predict the level of merger-induced gas motions expected in the ΛCDM model using hydrodynamical simulations of galaxy cluster formation. We show that the gas velocity dispersion is larger in more massive clusters, but exhibits a large scatter. We show that systems with large gas motions are morphologically disturbed, while early forming, relaxed groups show a smaller level of gas motions. By analyzing mock ASTRO-H observations of simulated clusters, we show that such observations can accurately measure the gas velocity dispersion out to the outskirts of nearby relaxedmore » galaxy clusters. ASTRO-H analysis of merging clusters, on the other hand, requires multi-component spectral fitting and enables unique studies of substructures in galaxy clusters by measuring both the peculiar velocities and the velocity dispersion of gas within individual sub-clusters.« less
Authors:
; ; ;  [1] ;  [2]
  1. Department of Physics, Yale University, New Haven, CT 06520 (United States)
  2. Department of Astronomy, Yale University, New Haven, CT 06520 (United States)
Publication Date:
OSTI Identifier:
22270593
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 777; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ASTRONOMY; ASTROPHYSICS; CALORIMETRY; COSMOLOGY; GALACTIC EVOLUTION; GALAXY CLUSTERS; MASS; NONLUMINOUS MATTER; PLASMA; RANDOMNESS; X RADIATION; X-RAY GALAXIES