skip to main content

Title: Structural, optical and ethanol gas sensing properties of In{sub 2}O{sub 3} and Dy{sup 3+}:In{sub 2}O{sub 3} nanoparticles

This paper reports the structural, optical and ethanol gas sensing properties of In{sub 2}O{sub 3} and 5% Dy{sup 3+}doped In{sub 2}O{sub 3} nanoparticles. The simple cost-effective hydrolysis assisted co-precipitation method was adopted. Synthesized samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-visible spectroscopy (UV-vis) techniques. XRD revealed that synthesized nanoparticles have cubic bixbyite phase. The lattice parameter, strain and crystallite size have been calculated by using the Williamson-Hall plots. UV-vis spectroscopy showed the red shift in the optical band gap due to Dy{sup 3+} doping in In{sub 2}O{sub 3} nanoparticles. For ethanol gas sensing properties, the nanoparticles were applied as thick film onto alumina substrate and tested at different operating temperatures. The results showed that the optimum operating temperature of both the gas sensors is 300°C. At optimum operating temperature, the response of In{sub 2}O{sub 3} and Dy{sup 3+}:In{sub 2}O{sub 3} gas sensor towards 250 ppm ethanol was found to be 9.65 and 37.80. The investigations revealed that the addition of Dy{sup 3+} as a dopant enhanced the sensing response of In{sub 2}O{sub 3} nanoparticles appreciably.
Authors:
; ; ;  [1]
  1. Department of Physics, Guru Nanak Dev University, Amritsar-143005 (India)
Publication Date:
OSTI Identifier:
22269491
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1591; Journal Issue: 1; Conference: 58. DAE solid state physics symposium 2013, Patiala, Punjab (India), 17-21 Dec 2013; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; ABSORPTION SPECTROSCOPY; ALUMINIUM OXIDES; COPRECIPITATION; CUBIC LATTICES; DOPED MATERIALS; DYSPROSIUM IONS; ETHANOL; FILMS; INDIUM OXIDES; LATTICE PARAMETERS; NANOSTRUCTURES; PARTICLE SIZE; PARTICLES; SCANNING ELECTRON MICROSCOPY; STRAINS; SUBSTRATES; X-RAY DIFFRACTION