skip to main content

Title: Role of bimodal distribution in tailoring the inter-particle interactions in Cu{sub 79}Co{sub 21} nanogranular films

Nanogranular Cu{sub 79}Co{sub 21} films were deposited by magnetron co-sputtering and their magnetotransport properties were investigated as a function of thickness (t). The fitting of magnetoresistance (MR) data reveals the presence of bimodal distribution of Co-particles. With the increase of film thickness from 25 to 200 nm, whereas smaller particle (2.5 nm) distribution remains unaffected, the bigger one grows monotonically from 3.3 nm to 4.9 nm for 25 ≤ t < 100 nm and stays same (4.9 nm) for 100 ≤ t ≤ 200 nm. From MR data recorded in the range of 20–300 K, it is observed that dependence of MR on thickness keeps on reducing on lowering the temperature. This observance has been presented in terms of presence of bimodal distribution and its role in tailoring the inter-particle magnetic interactions.
Authors:
; ;  [1]
  1. Thin Film Laboratory, Indian Institute of Technology Delhi, New Delhi-110016 (India)
Publication Date:
OSTI Identifier:
22269358
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1591; Journal Issue: 1; Conference: 58. DAE solid state physics symposium 2013, Patiala, Punjab (India), 17-21 Dec 2013; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; DEPOSITS; DISTRIBUTION; FILMS; MAGNETORESISTANCE; MAGNETRONS; NANOSTRUCTURES; PARTICLE INTERACTIONS; PARTICLES; SPUTTERING; THICKNESS