skip to main content

SciTech ConnectSciTech Connect

Title: Magnetic behavior in Cr{sub 2}@Ge{sub n} (1≤n≤12) clusters: A density functional investigation

With a goal to produce magnetic moment in Cr{sub 2} Doped Ge{sub n} clusters which will be useful for practical applications, we have considered the structure and magnetic properties of Pure Germanium clusters and substitutionally doped it with Cr dimer to produce Cr{sub 2}@Ge{sub n} clusters. As the first step of calculation, geometrical optimizations of the nanoclusters have been done. These optimized geometries have been used in calculate the average binding energy per atom (BE), HOMO-LUMO gap and hence the relative stability of the clusters. These parameters have been demonstrated as structural and electronic properties of the clusters. Gap between highest occupied molecular orbital and lowest unoccupied molecular orbital indicate cluster to be a potential motif for generating magnetic cluster assembled materials. Based on these values a comparative study on different sized clusters has been done in order to understand the origin of structures, electronic and magnetic properties of Cr{sub 2}@Ge{sub n} nanoclusters.
Authors:
; ;  [1]
  1. Physics Department, Birla Institute of Technology and Science, Pilani-333031, Rajasthan (India)
Publication Date:
OSTI Identifier:
22269343
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1591; Journal Issue: 1; Conference: 58. DAE solid state physics symposium 2013, Patiala, Punjab (India), 17-21 Dec 2013; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 77 NANOSCIENCE AND NANOTECHNOLOGY; BINDING ENERGY; DENSITY FUNCTIONAL METHOD; DOPED MATERIALS; GERMANIUM; MAGNETIC MOMENTS; MAGNETIC PROPERTIES; MOLECULAR ORBITAL METHOD; NANOSTRUCTURES; STABILITY