skip to main content

Title: Elastic constants and Fermi surface topology change in Calaverite AuTe{sub 2}: A density functional study

Structural, elastic, electronic and Fermi surface studies of AuTe{sub 2} have been carried out by means of first principles calculations based on density functional theory. The calculated ground state properties agree well with the experiment. Fermi surface and elastic constants are predicted for the first time and from the calculated elastic constants we find the compound to be mechanically stable satisfying the stability criteria of monoclinic structure. In addition, we also find the c-axis to be more compressible than the other two which is also speculated from the present work. The metallic behaviour of this compound is confirmed from the electronic band structure calculation as we find the bands to cross the Fermi level (E{sub F}). In addition, we also observe a FS topology change under pressure which is also explained in the present work.
Authors:
;  [1]
  1. Department of Physics, Indian Institute of Technology Hyderabad, Ordnance Factory Estate, Yeddumailaram-502205, Andhra Pradesh (India)
Publication Date:
OSTI Identifier:
22269262
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1591; Journal Issue: 1; Conference: 58. DAE solid state physics symposium 2013, Patiala, Punjab (India), 17-21 Dec 2013; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; DENSITY FUNCTIONAL METHOD; FERMI LEVEL; GOLD TELLURIDES; GROUND STATES; MONOCLINIC LATTICES; STABILITY; TOPOLOGY