skip to main content

Title: A Knowledge-Based Approach to Improving and Homogenizing Intensity Modulated Radiation Therapy Planning Quality Among Treatment Centers: An Example Application to Prostate Cancer Planning

Purpose: Intensity modulated radiation therapy (IMRT) treatment planning can have wide variation among different treatment centers. We propose a system to leverage the IMRT planning experience of larger institutions to automatically create high-quality plans for outside clinics. We explore feasibility by generating plans for patient datasets from an outside institution by adapting plans from our institution. Methods and Materials: A knowledge database was created from 132 IMRT treatment plans for prostate cancer at our institution. The outside institution, a community hospital, provided the datasets for 55 prostate cancer cases, including their original treatment plans. For each “query” case from the outside institution, a similar “match” case was identified in the knowledge database, and the match case’s plan parameters were then adapted and optimized to the query case by use of a semiautomated approach that required no expert planning knowledge. The plans generated with this knowledge-based approach were compared with the original treatment plans at several dose cutpoints. Results: Compared with the original plan, the knowledge-based plan had a significantly more homogeneous dose to the planning target volume and a significantly lower maximum dose. The volumes of the rectum, bladder, and femoral heads above all cutpoints were nominally lower for themore » knowledge-based plan; the reductions were significantly lower for the rectum. In 40% of cases, the knowledge-based plan had overall superior (lower) dose–volume histograms for rectum and bladder; in 54% of cases, the comparison was equivocal; in 6% of cases, the knowledge-based plan was inferior for both bladder and rectum. Conclusions: Knowledge-based planning was superior or equivalent to the original plan in 95% of cases. The knowledge-based approach shows promise for homogenizing plan quality by transferring planning expertise from more experienced to less experienced institutions.« less
 [1] ;  [1] ;  [2] ;  [3] ; ;  [1] ;  [2] ;  [1] ;  [2]
  1. Medical Physics Graduate Program, Duke University, Durham, North Carolina (United States)
  2. (United States)
  3. Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States)
Publication Date:
OSTI Identifier:
Resource Type:
Journal Article
Resource Relation:
Journal Name: International Journal of Radiation Oncology, Biology and Physics; Journal Volume: 87; Journal Issue: 1; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States