skip to main content

Title: Anomalous Hall effect in magnetic disordered alloys: Effects of spin orbital coupling

For disordered ternary Fe{sub 0.5}(Pd{sub 1−x}Pt{sub x}){sub 0.5} alloy films, the anomalous Hall effect obeys the conventional scaling law ρ{sub AH}=aρ{sub xx}+bρ{sub xx}{sup 2} with the longitudinal resistivity ρ{sub xx} and anomalous Hall resistivity ρ{sub AH}. Contributed by the intrinsic term and the extrinsic side-jump one, the scattering-independent anomalous Hall conductivity b increases with increasing Pt/Pd concentration. In contrast, the skew scattering parameter a is mainly influenced by the residual resistivity. The present results will facilitate the theoretical studies of the anomalous Hall effect in magnetic disordered alloys.
Authors:
; ; ;  [1] ;  [2] ; ;  [3]
  1. Shanghai Key Laboratory of Special Artificial Microstructure and Pohl Institute of Solid State Physics and School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China)
  2. Department of Physics, Fudan University, Shanghai 200433 (China)
  3. State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China)
Publication Date:
OSTI Identifier:
22267766
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 114; Journal Issue: 24; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ABUNDANCE; ALLOYS; CONCENTRATION RATIO; COUPLING; HALL EFFECT; HIGH ROOMS; SCALING LAWS; SCATTERING; SPIN