skip to main content

Title: Nonadiabatic electron dynamics of single-electron transport in a perpendicular magnetic field

We present results of our investigation into the nonadiabatic electron dynamics of a moving quantum dot assisted by surface acoustic waves (SAWs) in a perpendicular magnetic field. The measurements show the evolution of a quantized acoustoelectric current in a modulated external field, which provides direct information of the energy spectrum and the occupation of the SAW-induced elliptical dynamical quantum dot. By comparing the magnetic field dependence of the spectrum with that of a somewhat symmetric circular dot, we find the appearance of nonadiabatic excitations at low magnetic fields resulting from the anisotropy of the dot. We also detect the transitions between different quantum states of the elliptical dot, achieved by exploiting the interference of two phase-tuned SAWs. Our results demonstrate that the quantum states in an asymmetric dot are fragile and extremely sensitive to their environment.
Authors:
;  [1] ;  [1] ;  [2]
  1. College of Physical Science and Technology, Sichuan University, 610064 Chengdu (China)
  2. (China)
Publication Date:
OSTI Identifier:
22267710
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 104; Journal Issue: 17; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ELECTRONS; ENERGY SPECTRA; INTERFERENCE; MAGNETIC FIELDS; QUANTUM DOTS; QUANTUM STATES