skip to main content

SciTech ConnectSciTech Connect

Title: Comparative study of radiation emission without and with target in a 2.2 kJ plasma focus device

The radiation emission in a 2.2 kJ Mather-type dense plasma focus device is investigated using a five channel BPX65 PIN diode spectrometer. Estimated X-ray associated with the hollow anode without and with target in Argon gas medium is compared. At optimum conditions, the radiation emission from the system is found to be strongly influenced with target in hollow anode and the filling gas pressure. The maximum X-ray yield in 4π sr was obtained in case of hollow anode in argon gas medium with target 'Lead' due to interaction of electron beam. Results indicated that an appropriate design of hollow anode with target could enhance the radiation emission by more intense interaction of expected electron beam with target. The outcomes are helpful in designing a plasma focus with enhanced X-ray radiation with improved shot to shot reproducibility in plasma focus device.
Authors:
 [1] ; ;  [2]
  1. Plasma Technology Research Center, Department of Physics, Faculty of Science, University Malaya, 50603 Kuala Lumpur Malaysia and Department of Physics, Federal Urdu University of Arts, Science and Technology, 45320 Islamabad (Pakistan)
  2. Plasma Technology Research Center, Department of Physics, Faculty of Science, University Malaya, 50603 Kuala Lumpur (Malaysia)
Publication Date:
OSTI Identifier:
22266179
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1589; Journal Issue: 1; Conference: ICMNS 2012: 4. international conference on mathematics and natural sciences: Science for health, food and sustainable energy, Bandung (Indonesia), 8-9 Nov 2012; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ELECTRON BEAMS; EMISSION; HOLLOW ANODES; INTERACTIONS; PLASMA FOCUS; PLASMA FOCUS DEVICES; X RADIATION