skip to main content

SciTech ConnectSciTech Connect

Title: Electrochemically deposited BiTe-based nanowires for thermoelectric applications

Nanostructured materials systems such as thin-films and nanowires (NWs) are promising for thermoelectric power generation and refrigeration compared to traditional counterparts in bulk, due to their enhanced thermoelectric figures-of-merit. BiTe and its derivative compounds, in particular, are well-known for their near-room temperature thermoelectric performance. In this work, both the binary and ternary BiTe-based nanowires namely, BiTe and BiSbTe, were synthesized using template-assisted electrodeposition. Diameters of the nanowires were controlled by the pore sizes of the anodised alumina (AAO) templates used. Systematic study on the compositional change as a function of applied potential was carried out via Linear Sweep Voltanmetry (LSV). Chemical compositions of the nanowires were studied using Energy Dispersive X-ray Spectrometry (EDXS) and their microstructures evaluated using diffraction and imaging techniques. Results from chemical analysis on the nanowires indicated that while the Sb content in BiSbTe nanowires increased with more negative deposition potentials, the formation of Te{sup 0} and Bi{sub 2}Te{sub 3} were favorable at more positive potentials.
Authors:
; ; ; ; ;  [1]
  1. Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor Darul Ehsan (Malaysia)
Publication Date:
OSTI Identifier:
22266061
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1584; Journal Issue: 1; Conference: iNuSTEC2013: International nuclear science, technology and engineering conference 2013, Kuala Lumpur (Malaysia), 30 Sep - 2 Oct 2013; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; ALUMINIUM OXIDES; BISMUTH TELLURIDES; CHEMICAL ANALYSIS; CHEMICAL COMPOSITION; DEPOSITS; DIFFRACTION; ELECTRODEPOSITION; MICROSTRUCTURE; QUANTUM WIRES; REFRIGERATION; THIN FILMS; X-RAY SPECTROSCOPY