skip to main content

Title: Photovoltaic properties and morphology of organic solar cells based on liquid-crystal semiconducting polymer with additive

Bulk heterojunction organic solar cell based on liquid crystal semiconducting polymers of poly[9,9-dioctylfluorene-co-bithiophene] (F8T2) as p-type semiconductors and fullerenes (C{sub 60}) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as electron donor and acceptor has been fabricated and characterized for improving photovoltaic and optical properties. The photovoltaic performance including current voltage curves in the dark and illumination of the F8T2/C{sub 60} conventional and inverted bulk heterojunction solar cells were investigated. Relationship between the photovoltaic properties and morphological behavior was focused on tuning for optimization of photo-voltaic performance under annealing condition near glass transition temperature. Additive-effect of diiodooctane (DIO) and poly(3-hexylthiophene-2,5-diyl) (P3HT) on the photovoltaic performance and optical properties was investigated. Mechanism of the photovoltaic properties of the conventional and inverted solar cells will be discussed by the experimental results.
Authors:
; ; ; ; ;  [1]
  1. Department of Materials Science, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga 522-8533 (Japan)
Publication Date:
OSTI Identifier:
22266047
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1585; Journal Issue: 1; Conference: IRAGO conference 2013, Aichi (Japan), 24-25 Oct 2013; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; BINDING ENERGY; BUTYRIC ACID; ELECTRIC CONDUCTIVITY; FULLERENES; HETEROJUNCTIONS; LIQUID CRYSTALS; OPTICAL PROPERTIES; ORGANIC SOLAR CELLS; PHOTOVOLTAIC EFFECT; POLYMERS; SEMICONDUCTOR MATERIALS; TRANSITION TEMPERATURE