skip to main content

SciTech ConnectSciTech Connect

Title: Performance optimization of solar cells based on colloidal lead sulfide nanocrystals

Colloidal semiconducting quantum dot nanocrystals (NCs) have attracted extensive interest as active building-block for low-cost solution-processed photovoltaic due to their size tunable absorption from the visible to near IR. Among various nanocrystal composition, lead sulfide (PbS), having a bulk bandgap of 0.41 eV, are particularly attractive for photovoltaic applications due to their excellent photosensitivity in the near IR. Starting from colloidal synthesis, in this project functional solar cells are fabricated and characterized based on the nearly monodispersed colloidal PbS nanocrystals that we synthesized. These NC-solar cells are fabricated under a “depleted heterojunction” device architecture containing a planar “tipe II” heretojunction formed by a layer of electron-transporting TiO{sub 2} and a layer of PbS NCs. Relevant structural, optical, and electrical characterizations are performed on NCs and their devices. To understand the operational mechanism of these NC-based solar cells, various material and device aspects are investigated in this work aiming for optimized photovoltaic performance. These aspects include the effect of: (1) NC dimensions (and thus their band gaps); (2) passivation of surface traps through post-synthesis treatments; (3) NC surface ligand-exchange; and (4) interfacial modifications at the heterojunction. The most optimized photovoltaic performance is found after combining the surface trap passivation strategy bymore » halides, ligand-exchange by 3-mercaptopropionic acids, and interfacial TiCl4 treatment, leading to a peak open-circuit voltage of 0.53 V, a short-circuit current density of 14.03 mAcm{sup −2}, and a power conversion efficiency of 3.25%.« less
Authors:
 [1]
  1. Department of Physics, Bandung Institute of Technology (ITB), Jalan Ganesha 10 Bandung 40132, Bandung (Indonesia)
Publication Date:
OSTI Identifier:
22266025
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1586; Journal Issue: 1; Conference: NNS2013: 5. nanoscience and nanotechnology symposium, Surabaya (Indonesia), 23-25 Oct 2013; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; 77 NANOSCIENCE AND NANOTECHNOLOGY; ABSORPTION; CURRENT DENSITY; EFFICIENCY; ELECTRIC POTENTIAL; ELECTRICAL FAULTS; ION EXCHANGE; LEAD SULFIDES; LIGANDS; PASSIVATION; PHOTOSENSITIVITY; PHOTOVOLTAIC EFFECT; QUANTUM DOTS; SOLAR CELLS; SYNTHESIS; TITANIUM OXIDES