skip to main content

SciTech ConnectSciTech Connect

Title: Photon assisted current in molecular nanojunctions with novel types of contacts

We propose new approaches to coherent control of transport via molecular junctions, which bypasses several of the hurdles to experimental realization of optically manipulated nanoelectronics noted in the previous literature. The first method is based on the application of intrinsic semiconductor contacts and optical frequencies below the semiconductor bandgap. Our analytical theory predicts a new phenomenon, referred to as coherent destruction of induced tunnelling, which extends the phenomenon of coherent destruction of tunnelling frequently discussed in the previous literature. We also propose to use graphene electrodes as a platform for effective photon assisted tunneling through molecular conduction nanojunctions. We predict dramatic increasing currents evaluated at side-band energies ∼nħω (n is a whole number) related to the modification of graphene gapless spectrum under the action of external electromagnetic field of frequency ω. Our results illustrate the potential of semiconductor and graphene contacts in coherent control of photocurrent.
Authors:
 [1]
  1. Faculty of Science, Holon Institute of Technology, 58102 Holon, Israel and School of Chemistry, Tel-Aviv University, 69978 Tel-Aviv (Israel)
Publication Date:
OSTI Identifier:
22265919
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1590; Journal Issue: 1; Conference: International conference on electronic, photonic, plasmonic and magnetic properties of nanomaterials, London (Canada), 12-16 Aug 2013; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 77 NANOSCIENCE AND NANOTECHNOLOGY; CONTROL; ELECTROMAGNETIC FIELDS; GRAPHENE; PHOTONS; SEMICONDUCTOR MATERIALS; SPECTRA; TUNNEL EFFECT