skip to main content

Title: Gravitational lensing beyond the weak-field approximation

Gravitational lensing is considered in the full spacetime formalism of general relativity, assuming that the light rays are lightlike geodesics in a Lorentzian manifold. The review consists of three parts. The first part is devoted to spherically symmetric and static spacetimes. In particular, an exact lens map for this situation is discussed. The second part is on axisymmetric and stationary spacetimes. It concentrates on the investigation of the photon region, i.e., the region filled by spherical lightlike geodesics, in the Kerr spacetime. The photon region is of crucial relevance for the formation of a shadow. Finally, the third part briefly addresses two topics that apply to spacetimes without symmetry, namely Fermat’s principle and the exact lens map of Frittelli and Newman.
Authors:
 [1]
  1. ZARM, University of Bremen, 28359 Bremen (Germany)
Publication Date:
OSTI Identifier:
22264063
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1577; Journal Issue: 1; Conference: 5. Leopoldo Garcia-Colin Mexican meeting on mathematical and experimental physics, Mexico City (Mexico), 9-13 Sep 2013; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; APPROXIMATIONS; AXIAL SYMMETRY; GENERAL RELATIVITY THEORY; GRAVITATIONAL LENSES; PHOTONS; SPACE-TIME