skip to main content

Title: Surface plasmon coupled emission studies on engineered thin film hybrids of nano α−Al{sub 2}O{sub 3} on silver

We report the first time engineering and fabrication of a novel thin film hybrid of nano α-alumina doped in a polyvinyl alcohol (PVA) matrix along with rhodamine b (Rh.B) on a silver thin film. Silver films of 50 nm thickness on glass slides were fabricated by thermal evaporation. Nano α-alumina was synthesized through the combustion route and characterized by XRD. The α-alumina was dispersed in the PVA-Rh.B matrix by tip sonication. The resultant solution was spin coated on the Ag thin film at 3000 rpm to generate an overcoat of ∼30 nm. We have designed and constructed an opto-mechanical setup for performing the SPCE studies. Excitation with a 532 nm continuous laser, led to the coupling of the energy of Rh.B emission to the surface plasmon modes of silver. The emission @ 580 nm was recorded using an Ocean Optics(copyright, serif) fiber optic spectrometer. Calculation of the ratio of signal intensity between the directional SPCE and isotropic fluorescence gives us the factor of signal enhancements which SPCE offers. We report an '8 fold' signal enhancement attributed to SPCE arising from the metal oxide doped thin film hybrid. We observed only a '5 fold' signal enhancement in the case of amore » thin film hybrid without α-alumina. The emission was also 92% P-polarized which is in coherence with the theory of SPCE. The greater degree of signal enhancement observed in the α-alumina doped thin film substrate can be attributed to the surface roughness which alumina offers to silver, which along with the porous nature of alumina enables a greater degree of adsorption of Rh.B which results in a higher emission intensity. Computational modeling was also performed, based on surface plasmon resonance (SPR) calculations to provide theoretical background to observed experimental data. The α-alumina thin film hybrid can be extended as an economical sensing platform towards the high sensitive detection of analytes.« less
Authors:
; ; ;  [1] ; ;  [2]
  1. Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Andhra Pradesh, India 515134 (India)
  2. Department of Physics and Astronomy, 202C Kinard Laboratory, Clemson University, Clemson, SC 29634 (United States)
Publication Date:
OSTI Identifier:
22264016
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1576; Journal Issue: 1; Conference: OMTAT 2013: 2. international conference on optoelectronic materials and thin films for advanced technology, Kochi, Kerala (India), 3-5 Jan 2013; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 36 MATERIALS SCIENCE; ADSORPTION; ALUMINIUM OXIDES; DETECTION; DOPED MATERIALS; EVAPORATION; FLUORESCENCE; GLASS; HYBRIDIZATION; SILVER; SUBSTRATES; SURFACES; THIN FILMS; X-RAY DIFFRACTION