skip to main content

Title: Characteristic evaluation of cooling technique using liquid nitrogen and metal porous media

A remountable high-temperature superconducting magnet, whose segments can be mounted and demounted repeatedly, has been proposed for construction and maintenance of superconducting magnet and inner reactor components of a fusion reactor. One of the issues in this design is that the performance of the magnet deteriorates by a local temperature rise due to Joule heating in jointing regions. In order to prevent local temperature rise, a cooling system using a cryogenic coolant and metal porous media was proposed and experimental studies have been carried out using liquid nitrogen. In this study, flow and heat transfer characteristics of cooling system using subcooled liquid nitrogen and bronze particle sintered porous media are evaluated through experiments in which the inlet degree of subcooling and flow rate of the liquid nitrogen. The flow characteristics without heat input were coincided with Ergun’s equation expressing single-phase flow in porous materials. The obtained boiling curve was categorized into three conditions; convection region, nucleate boiling region and mixed region with nucleate and film boiling. Wall superheat did not increase drastically with porous media after departure from nucleate boiling point, which is different from a situation of usual boiling curve in a smooth tube. The fact is important characteristicmore » to cooling superconducting magnet to avoid its quench. Heat transfer coefficient with bronze particle sintered porous media was at least twice larger than that without the porous media. It was also indicated qualitatively that departure from nucleate boiling point and heat transfer coefficient depends on degree of subcooling and mass flow rate. The quantitative evaluation of them and further discussion for the cooling system will be performed as future tasks.« less
Authors:
; ;  [1]
  1. Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579 (Japan)
Publication Date:
OSTI Identifier:
22263961
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1573; Journal Issue: 1; Conference: International cryogenic materials conference, Anchorage, AK (United States), 17-21 Jun 2013; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; BRONZE; CONVECTION; COOLING SYSTEMS; EVALUATION; FILM BOILING; HEAT; JOULE HEATING; LIQUIDS; NITROGEN; NUCLEATE BOILING; POROUS MATERIALS; SUBCOOLING; SUPERCONDUCTING MAGNETS