skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Full wave simulation of waves in ECRIS plasmas based on the finite element method

Abstract

This paper describes the modeling and the full wave numerical simulation of electromagnetic waves propagation and absorption in an anisotropic magnetized plasma filling the resonant cavity of an electron cyclotron resonance ion source (ECRIS). The model assumes inhomogeneous, dispersive and tensorial constitutive relations. Maxwell's equations are solved by the finite element method (FEM), using the COMSOL Multiphysics{sup ®} suite. All the relevant details have been considered in the model, including the non uniform external magnetostatic field used for plasma confinement, the local electron density profile resulting in the full-3D non uniform magnetized plasma complex dielectric tensor. The more accurate plasma simulations clearly show the importance of cavity effect on wave propagation and the effects of a resonant surface. These studies are the pillars for an improved ECRIS plasma modeling, that is mandatory to optimize the ion source output (beam intensity distribution and charge state, especially). Any new project concerning the advanced ECRIS design will take benefit by an adequate modeling of self-consistent wave absorption simulations.

Authors:
 [1]; ; ; ; ; ; ;  [2];  [3];  [4];  [5]
  1. INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123, Catania, Italy and Università Mediterranea di Reggio Calabria, Dipartimento di Ingegneria dell'Informazione, delle Infrastrutture e dell'Energia Sostenibile (DIIES), Via Graziella, I (Italy)
  2. INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123, Catania (Italy)
  3. Università degli Studi di Catania, Dipartimento di Ingegneria Elettrica Elettronica ed Informatica (DIEEI), Viale Andrea Doria 6, 95125 Catania (Italy)
  4. INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123, Catania, Italy and Università degli Studi di Catania, Dipartimento di Ingegneria Elettrica Elettronica ed Informatica (DIEEI), Viale Andrea Doria 6, 95125 Catania (Italy)
  5. Università Mediterranea di Reggio Calabria, Dipartimento di Ingegneria dell'Informazione, delle Infrastrutture e dell'Energia Sostenibile (DIIES), Via Graziella, I-89100 Reggio Calabria (Italy)
Publication Date:
OSTI Identifier:
22263905
Resource Type:
Journal Article
Journal Name:
AIP Conference Proceedings
Additional Journal Information:
Journal Volume: 1580; Journal Issue: 1; Conference: 20. topical conference on radiofrequency power in plasmas, Sorrento (Italy), 25-28 Jun 2013; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); Journal ID: ISSN 0094-243X
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ABSORPTION; CHARGE STATES; COMPUTERIZED SIMULATION; DIELECTRIC TENSOR; ECR ION SOURCES; ELECTROMAGNETIC RADIATION; ELECTRON DENSITY; FINITE ELEMENT METHOD; MAXWELL EQUATIONS; PLASMA; PLASMA CONFINEMENT; PLASMA SIMULATION; WAVE PROPAGATION

Citation Formats

Torrisi, G., Mascali, D., Neri, L., Castro, G., Patti, G., Celona, L., Gammino, S., Ciavola, G., Di Donato, L., Sorbello, G., and Isernia, T. Full wave simulation of waves in ECRIS plasmas based on the finite element method. United States: N. p., 2014. Web. doi:10.1063/1.4864605.
Torrisi, G., Mascali, D., Neri, L., Castro, G., Patti, G., Celona, L., Gammino, S., Ciavola, G., Di Donato, L., Sorbello, G., & Isernia, T. Full wave simulation of waves in ECRIS plasmas based on the finite element method. United States. https://doi.org/10.1063/1.4864605
Torrisi, G., Mascali, D., Neri, L., Castro, G., Patti, G., Celona, L., Gammino, S., Ciavola, G., Di Donato, L., Sorbello, G., and Isernia, T. 2014. "Full wave simulation of waves in ECRIS plasmas based on the finite element method". United States. https://doi.org/10.1063/1.4864605.
@article{osti_22263905,
title = {Full wave simulation of waves in ECRIS plasmas based on the finite element method},
author = {Torrisi, G. and Mascali, D. and Neri, L. and Castro, G. and Patti, G. and Celona, L. and Gammino, S. and Ciavola, G. and Di Donato, L. and Sorbello, G. and Isernia, T.},
abstractNote = {This paper describes the modeling and the full wave numerical simulation of electromagnetic waves propagation and absorption in an anisotropic magnetized plasma filling the resonant cavity of an electron cyclotron resonance ion source (ECRIS). The model assumes inhomogeneous, dispersive and tensorial constitutive relations. Maxwell's equations are solved by the finite element method (FEM), using the COMSOL Multiphysics{sup ®} suite. All the relevant details have been considered in the model, including the non uniform external magnetostatic field used for plasma confinement, the local electron density profile resulting in the full-3D non uniform magnetized plasma complex dielectric tensor. The more accurate plasma simulations clearly show the importance of cavity effect on wave propagation and the effects of a resonant surface. These studies are the pillars for an improved ECRIS plasma modeling, that is mandatory to optimize the ion source output (beam intensity distribution and charge state, especially). Any new project concerning the advanced ECRIS design will take benefit by an adequate modeling of self-consistent wave absorption simulations.},
doi = {10.1063/1.4864605},
url = {https://www.osti.gov/biblio/22263905}, journal = {AIP Conference Proceedings},
issn = {0094-243X},
number = 1,
volume = 1580,
place = {United States},
year = {Wed Feb 12 00:00:00 EST 2014},
month = {Wed Feb 12 00:00:00 EST 2014}
}