skip to main content

SciTech ConnectSciTech Connect

Title: Dynamic simulation of a reverse Brayton refrigerator

A test refrigerator based on the modified Reverse Brayton cycle has been developed in the Chinese Academy of Sciences recently. To study the behaviors of this test refrigerator, a dynamic simulation has been carried out. The numerical model comprises the typical components of the test refrigerator: compressor, valves, heat exchangers, expander and heater. This simulator is based on the oriented-object approach and each component is represented by a set of differential and algebraic equations. The control system of the test refrigerator is also simulated, which can be used to optimize the control strategies. This paper describes all the models and shows the simulation results. Comparisons between simulation results and experimental data are also presented. Experimental validation on the test refrigerator gives satisfactory results.
Authors:
; ; ;  [1] ; ;  [2]
  1. State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, CAS, Beijing, 100190 (China)
  2. State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, CAS, Beijing, 100190 China and Graduate University of Chinese Academy of Sciences, Beijing, 100190 (China)
Publication Date:
OSTI Identifier:
22262759
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1573; Journal Issue: 1; Conference: Cryogenic engineering conference, Anchorage, AK (United States), 17-21 Jun 2013; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; BRAYTON CYCLE; COMPARATIVE EVALUATIONS; COMPRESSORS; CONTROL SYSTEMS; HEAT EXCHANGERS; HEATERS; REFRIGERATORS; SIMULATION; SIMULATORS