skip to main content

Title: Study on thermal properties and crystallization behavior of electron beam irradiated ethylene vinyl acetate (EVA)/waste tyre dust (WTD) blends in the presence of polyethylene graft maleic anhydride (PEgMAH)

The aim of this article is to show the effects of the electron beam irradiation dose and presence of a compatibiliser on the thermal properties and crystallinity of EVA/WTD blends. The purpose of applying electron beam radiation with doses range 50 to 200 kGy and adding a compatibiliser was to enhance the compatibility of the studied blends and at the same time to investigate the possibility of using this technique in the process of recycling polymeric materials. As the compatibilisers, the polyethylene grafted maleic anhydride (PEgMAH) was utilized, they were added at the amounts of 1-5 phr respectively. The enhancement of thermal properties was accompanied by the following effects, discussed in this article: i) an irradiated EVA/WTD blend at 200kGy was found to improve the thermal properties of EVA, ii) the addition of PEgMAH in EVA/WTD blends and the subsequent irradiation allowed prevention of degradation mechanism. iii) the ΔH{sub f} and crystallinity percentage decrease at higher PEgMAH content.
Authors:
;  [1] ;  [2] ;  [3]
  1. School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan (Malaysia)
  2. Radiation Processing Technology Division, Malaysian Nuclear Agency (Nuclear Malaysia), Bangi, 43000 Kajang (Malaysia)
  3. School of Materials and Mineral Resources, USM Engineering Campus (Malaysia)
Publication Date:
OSTI Identifier:
22262694
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1571; Journal Issue: 1; Conference: 2013 UKM FST postgraduate colloquium, Selangor (Malaysia), 3-4 Jul 2013; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; CRYSTALLIZATION; ELECTRON BEAMS; ETHYLENE; IRRADIATION; POLYETHYLENES; RADIATION DOSES; THERMODYNAMIC PROPERTIES; VINYL ACETATE