skip to main content

SciTech ConnectSciTech Connect

Title: Low-temperature processable amorphous In-W-O thin-film transistors with high mobility and stability

Thin-film transistors (TFTs) with a high stability and a high field-effect mobility have been achieved using W-doped indium oxide semiconductors in a low-temperature process (∼150 °C). By incorporating WO{sub 3} into indium oxide, TFTs that were highly stable under a negative bias stress were reproducibly achieved without high-temperature annealing, and the degradation of the field-effect mobility was not pronounced. This may be due to the efficient suppression of the excess oxygen vacancies in the film by the high dissociation energy of the bond between oxygen and W atoms and to the different charge states of W ions.
Authors:
; ; ; ; ; ;  [1] ;  [2]
  1. International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)
  2. MANA Foundry and MANA Advanced Device Materials Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)
Publication Date:
OSTI Identifier:
22262596
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 104; Journal Issue: 15; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; CHARGE STATES; DISSOCIATION ENERGY; INDIUM OXIDES; MOBILITY; SEMICONDUCTOR MATERIALS; STABILITY; THIN FILMS; TRANSISTORS; TUNGSTEN IONS; TUNGSTEN OXIDES; VACANCIES