skip to main content

Title: In-situ scanning electron microscopy and atomic force microscopy Young's modulus determination of indium oxide microrods for micromechanical resonator applications

Electric field induced mechanical resonances of In{sub 2}O{sub 3} microrods are studied by in-situ measurements in the chamber of a scanning electron microscope. Young's moduli of rods with different cross-sectional shapes are calculated from the resonance frequency, and a range of values between 131 and 152 GPa are obtained. A quality factor of 1180–3780 is measured from the amplitude-frequency curves, revealing the suitability of In{sub 2}O{sub 3} microrods as micromechanical resonators. The Young's modulus, E, of one of the rods is also measured from the elastic response in the force-displacement curve recorded in an atomic force microscope. E values obtained by in-situ scanning electron microscopy and by atomic force microscopy are found to differ in about 8%. The results provide data on Young's modulus of In{sub 2}O{sub 3} and confirm the suitability of in-situ scanning electron microscopy mechanical resonance measurements to investigate the elastic behavior of semiconductor microrods.
Authors:
; ; ; ;  [1]
  1. Departamento de Física de Materiales, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain)
Publication Date:
OSTI Identifier:
22262533
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 104; Journal Issue: 16; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ATOMIC FORCE MICROSCOPY; INDIUM OXIDES; QUALITY FACTOR; RESONATORS; SCANNING ELECTRON MICROSCOPY; SEMICONDUCTOR MATERIALS; YOUNG MODULUS