skip to main content

SciTech ConnectSciTech Connect

Title: GaAs single quantum dot embedded into AlGaAs nanowire

We report on a study of the photoluminescence spectra taken from quasi one-dimensional and quasi zero-dimensional semiconductor heterostructures. The structures were grown by molecular-beam epitaxy in (111) direction and were cylindrical nanowires based on AlGaAs, of 20 - 50 nm in diameter and 0.5 - 1 μm in length. Inside the nanowires contain one or two GaAs quantum dots, of 2 nm thick and 15 - 45 nm in diameter. We studied a single nanowire. The photoluminescence and photoluminescence excitation spectra were registered as a function of the intensity of optical excitation.
Authors:
;  [1] ;  [2] ; ; ;  [3] ; ;  [4]
  1. A.F.Ioffe Physical-Technical Institute, Politekhnicheskaya 26, 194021, St. Petersburg, Russia and Spin Optics Laboratory, Saint Petersburg State University, Ul'yanovskaya 1, Petrodvorets, St. Petersburg, 198904 (Russian Federation)
  2. A.F.Ioffe Physical-Technical Institute, Politekhnicheskaya 26, 194021, St. Petersburg (Russian Federation)
  3. A.F.Ioffe Physical-Technical Institute, Politekhnicheskaya 26, 194021, St. Petersburg, Russia and St. Petersburg Academic University of the RAS Khlopina 8/3, 195220, St. Petersburg (Russian Federation)
  4. CEA-CNRS group Nanophysique et Semiconducteurs, CEA, INAC, SP2M, and Institut Néel, 17 rue des Martyrs, F-38054 Grenoble (France)
Publication Date:
OSTI Identifier:
22261908
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1566; Journal Issue: 1; Conference: ICPS 2012: 31. international conference on the physics of semiconductors, Zurich (Switzerland), 29 Jul - 3 Aug 2012; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ALUMINIUM ARSENIDES; EXCITATION; GALLIUM ARSENIDES; MOLECULAR BEAM EPITAXY; ONE-DIMENSIONAL CALCULATIONS; PHOTOLUMINESCENCE; QUANTUM DOTS; QUANTUM WIRES; SEMICONDUCTOR MATERIALS; SPECTRA