skip to main content

Title: Photon induced Schottky barrier effects in inverse-extraordinary optoconductance structures

We expand upon our previous work and characterize the photo-dependence of the effective Schottky barrier in EOC and I-EOC heterostructures by measuring the open circuit voltage and the change in the reverse bias resistance. Under full illumination by a 5 mW, 632.8 nm HeNe laser, the barrier is effectively eliminated and the Ti-GaAs interface becomes Ohmic. The reverse bias resistance changes by a factor of 209 over an illumination intensity change of 10–5:1. While this work illustrates the behavior of the Schottky interface upon illumination, it also demonstrates the effectiveness of the four-point, van der Pauw measurement fundamental to EOC/I-EOC phenomena at monitoring changes in the active region of the mesa. The resistance is largely unaffected by the photovoltaic, DC offset of the surrounding leads, as indicated by the radial symmetry of 2-D resistance maps obtained by rastering the laser across EOC/IEOC devices.
Authors:
;  [1] ; ;  [2]
  1. Department of Physics, Washington University in St. Louis, St. Louis, Missouri 63130 (United States)
  2. Blackett Laboratory, Imperial College London, SW7 2BZ (United Kingdom)
Publication Date:
OSTI Identifier:
22261879
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1566; Journal Issue: 1; Conference: ICPS 2012: 31. international conference on the physics of semiconductors, Zurich (Switzerland), 29 Jul - 3 Aug 2012; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ELECTRIC POTENTIAL; GALLIUM ARSENIDES; HELIUM-NEON LASERS; PHOTOVOLTAIC EFFECT