skip to main content

SciTech ConnectSciTech Connect

Title: Electrical spin injection in 2D semiconductors and topological insulators

We have developed a theory of spin orientation by electric current in 2D semiconductors. It is shown that the spin depends on the relation between the energy and spin relaxation times and can vary by a factor of two for the limiting cases of fast and slow energy relaxation. For symmetrically-doped (110)-grown semiconductor quantum wells the effect of current-induced spin orientation is shown to exist due to random spatial variation of the Rashba spin-orbit splitting. We demonstrate that the spin depends strongly on the correlation length of this random spin-orbit field. We calculate the spin orientation degree in two-dimensional topological insulators. In high electric fields when the “streaming” regime is realized, the spin orientation degree weakly depends on the electric field and can reach values about 5%.
Authors:
;  [1]
  1. Ioffe Physical-Technical Institute of the Russian Academy of Sciences, St. Petersburg (Russian Federation)
Publication Date:
OSTI Identifier:
22261846
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1566; Journal Issue: 1; Conference: ICPS 2012: 31. international conference on the physics of semiconductors, Zurich (Switzerland), 29 Jul - 3 Aug 2012; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 77 NANOSCIENCE AND NANOTECHNOLOGY; DOPED MATERIALS; ELECTRIC CURRENTS; ELECTRIC FIELDS; QUANTUM WELLS; SEMICONDUCTOR MATERIALS; SPIN; SPIN ORIENTATION