skip to main content

SciTech ConnectSciTech Connect

Title: Acoustic-phonon-limited mobility and giant phonon-drag thermopower in MgZnO/ZnO heterostructures

We present numerical simulations for the acoustic-phonon-limited mobility, μ{sub ac}, in two-dimensional electron gases (2DEGs) confined in MgZnO/ZnO heterostructures for temperatures 0.4–20 K. The calculations are based on the semiclassical Boltzmann equation. We examine two 2DEGs with sheet densities 1.4 and 7×10{sup 15} m{sup −2}. Good agreement is found with recent experimental data without any adjustable parameter. We also calculate the contribution to thermopower that arises due to the phonon wind set up by a temperature gradient (the so-called phonon-drag thermopower, S{sup g}). A giant magnitude of S{sup g} is predicted that exceeds 50–100 mV/K at 5 K depending on the sheet density. Our findings suggest that the ZnO based heterostructures could be promising materials for thermoelectric applications at low temperatures.
Authors:
 [1]
  1. Materials Science Department, University of Patras, Patras 26 504 (Greece)
Publication Date:
OSTI Identifier:
22261800
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1566; Journal Issue: 1; Conference: ICPS 2012: 31. international conference on the physics of semiconductors, Zurich (Switzerland), 29 Jul - 3 Aug 2012; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; BOLTZMANN EQUATION; COMPUTERIZED SIMULATION; DENSITY; MOBILITY; PHONONS; SEMICLASSICAL APPROXIMATION; TEMPERATURE GRADIENTS; ZINC OXIDES