skip to main content

Title: Tool path influence on electric pulse aided deformation during incremental sheet metal forming

Titanium and its alloys are difficult to form at room temperature due to their high flow stress. Super plastic deformation of Ti alloys involves low strain rate forming at very high temperatures which need special tooling which can withstand high temperatures. It was observed that when high current density electric pulse is applied during deformation it reduces the flow stress through electron-dislocation interaction. This phenomenon is known as electro-plasticity. In the present work, importance of tool configuration to enhance the formability without much resistive heating is demonstrated for Incremental Sheet Metal Forming (ISMF). Tool configuration is selected to minimize the current carrying zone in DC pulse aided incremental forming to enhance the formability due to electro plasticity and the same is demonstrated by forming two pyramid shaped components of 30° and 45° wall angles using a Titanium alloy sheet of 0.6 mm thickness. Load measurement indicated that a critical current density is essential for the electro-plasticity to be effective and the same is realized with the load and temperature measurements.
Authors:
 [1] ; ;  [2]
  1. Presently with HAL, Kanpur (India)
  2. Department of Mechanical Engineering, Indian Institute of Technology Hyderabad (India)
Publication Date:
OSTI Identifier:
22261671
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1567; Journal Issue: 1; Conference: NUMISHEET 2014: 9. international conference and workshop on numerical simulation of 3D sheet metal forming processes, Melbourne (Australia), 6-10 Jan 2014; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; CRITICAL CURRENT; CURRENT DENSITY; DEFORMATION; DISLOCATIONS; FLOW STRESS; INTERACTIONS; PLASTICITY; PULSES; STRAIN RATE; TEMPERATURE MEASUREMENT; TITANIUM; TITANIUM ALLOYS