skip to main content

SciTech ConnectSciTech Connect

Title: Validation of formability of laminated sheet metal for deep drawing process using GTN damage model

In this study, we studied formability of PET/PVC laminated sheet metal which named VCM (Vinyl Coated Metal). VCM offers various patterns and good-looking metal steel used for appliances such as refrigerator and washing machine. But, this sheet has problems which are crack and peeling of film when the material is formed by deep drawing process. To predict the problems, we used finite element method and GTN (Gurson-Tvergaard-Needleman) damage model to represent damage of material. We divided the VCM into 3 layers (PET film, adhesive and steel added PVC) in finite element analysis model to express the crack and peeling phenomenon. The material properties of each layer are determined by reverse engineering based on tensile test result. Furthermore, we performed the simple rectangular deep drawing and simulated it. The simulation result shows good agreement with drawing experiment result in position, punch stroke of crack occurrence. Also, we studied the fracture mechanism of PET film on VCM by comparing the width direction strain of metal and PET film.
Authors:
; ;  [1] ;  [2]
  1. Department of Mechanical Engineering, Sogang University, 1 Sinsu-dong, Mapo-gu, Seoul, 121-742 (Korea, Republic of)
  2. Mold/die and forming technology team, Product prestige research lab, LG electronics, 222, LG-ro, Jinwi-myeon, Pyeongtaek-si, Gyeonggi-do, 451-713 (Korea, Republic of)
Publication Date:
OSTI Identifier:
22261664
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1567; Journal Issue: 1; Conference: NUMISHEET 2014: 9. international conference and workshop on numerical simulation of 3D sheet metal forming processes, Melbourne (Australia), 6-10 Jan 2014; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICAL METHODS AND COMPUTING; COMPARATIVE EVALUATIONS; ENGINEERING; FILMS; FINITE ELEMENT METHOD; METALS; PVC; SIMULATION; STEELS; VALIDATION