skip to main content

Title: Super-resolving quantum radar: Coherent-state sources with homodyne detection suffice to beat the diffraction limit

There has been much recent interest in quantum metrology for applications to sub-Raleigh ranging and remote sensing such as in quantum radar. For quantum radar, atmospheric absorption and diffraction rapidly degrades any actively transmitted quantum states of light, such as N00N states, so that for this high-loss regime the optimal strategy is to transmit coherent states of light, which suffer no worse loss than the linear Beer's law for classical radar attenuation, and which provide sensitivity at the shot-noise limit in the returned power. We show that coherent radar radiation sources, coupled with a quantum homodyne detection scheme, provide both longitudinal and angular super-resolution much below the Rayleigh diffraction limit, with sensitivity at shot-noise in terms of the detected photon power. Our approach provides a template for the development of a complete super-resolving quantum radar system with currently available technology.
Authors:
;  [1] ;  [2] ;  [1] ;  [3]
  1. Hearne Institute for Theoretical Physics and Department of Physics and Astronomy Louisiana State University, Baton Rouge, Louisiana 70803 (United States)
  2. Department of Physics and Astronomy, Lehman College, The City University of New York, Bronx, New York 10468-1589 (United States)
  3. (China)
Publication Date:
OSTI Identifier:
22258778
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 114; Journal Issue: 19; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ABSORPTION; ANNIHILATION OPERATORS; DIFFRACTION; EIGENSTATES; PHOTONS; QUANTUM STATES; RADAR; RADIATION SOURCES; REMOTE SENSING; SENSITIVITY