skip to main content

Title: First-principles study of spin-transfer torque in Co{sub 2}MnSi/Al/Co{sub 2}MnSi spin-valve

The spin-transfer torque (STT) in Co{sub 2}MnSi(CMS)/Al/Co{sub 2}MnSi spin-valve system with and without interfacial disorder is studied by a first-principles noncollinear wave-function-matching method. It is shown that in the case of clean interface the angular dependence of STT for CoCo/Al (the asymmetry parameter Λ≈4.5) is more skewed than that for MnSi/Al (Λ≈2.9), which suggests the clean CoCo/Al architecture is much more efficient for the application on radio frequency oscillation. We also find that even with interfacial disorder the spin-valve of half-metallic CMS still has a relatively large parameter Λ compared to that of conventional ferromagnet. In addition, for clean interface the in-plane torkance of MnSi/Al is about twice as large as that of CoCo/Al. However, as long as the degree of interfacial disorder is sufficiently large, the CoCo/Al and MnSi/Al will show approximately the same magnitude of in-plane torkance. Furthermore, our results demonstrate that CMS/Al/CMS system has very high efficiency of STT to switch the magnetic layer of spin-valve.
Authors:
;  [1]
  1. Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023 (China)
Publication Date:
OSTI Identifier:
22258772
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 114; Journal Issue: 19; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; MANGANESE SILICIDES; OSCILLATIONS; RADIOWAVE RADIATION; SPIN; SWITCHES; TORQUE; VALVES; WAVE FUNCTIONS