skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Highly transparent Nb-doped indium oxide electrodes for organic solar cells

Journal Article · · Journal of Vacuum Science and Technology. A, Vacuum, Surfaces and Films
DOI:https://doi.org/10.1116/1.4832238· OSTI ID:22258760
;  [1];  [2];  [3]; ;  [4]
  1. Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of)
  2. Professional Graduate School of Flexible and Printable Electronics, Chonbuk National University, 664-14, Deokjin-dong, Jeongju-si, Jellabuk-do 561-756 (Korea, Republic of)
  3. Department of Physics, Dankook University, Mt. 29, Anseo-Dong, Chenan 330-714 (Korea, Republic of)
  4. Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, 1 Seocheon-dong, Yongin, Gyeonggi-do 446-701 (Korea, Republic of)

The authors investigated the characteristics of Nb-doped In{sub 2}O{sub 3} (INbO) films prepared by co-sputtering of Nb{sub 2}O{sub 5} and In{sub 2}O{sub 3} for use in transparent anodes for organic solar cells (OSCs). To optimize the Nb dopant composition in the In{sub 2}O{sub 3} matrix, the effect of the Nb doping power on the resistivity and transparency of the INbO films were examined. The electronic structure and microstructure of the INbO films were also investigated using synchrotron x-ray absorption spectroscopy and x-ray diffraction examinations in detail. At the optimized Nb co-sputtering power of 30 W, the INbO film exhibited a sheet resistance of 15 Ω/sq, and an optical transmittance of 86.04% at 550 nm, which are highly acceptable for the use as transparent electrodes in the fabrication of OSCs. More importantly, the comparable power conversion efficiency (3.34%) of the OSC with an INbO anode with that (3.31%) of an OSC with a commercial ITO anode indicates that INbO films are promising as a transparent electrode for high performance OSCs.

OSTI ID:
22258760
Journal Information:
Journal of Vacuum Science and Technology. A, Vacuum, Surfaces and Films, Vol. 32, Issue 2; Other Information: (c) 2014 American Vacuum Society; Country of input: International Atomic Energy Agency (IAEA); ISSN 0734-2101
Country of Publication:
United States
Language:
English