skip to main content

SciTech ConnectSciTech Connect

Title: Broadband three-photon near-infrared quantum cutting in Tm{sup 3+} singly doped YVO{sub 4}

An efficient three-photon near-infrared (NIR) quantum cutting (QC) is reported in Tm{sup 3+} singly doped YVO{sub 4} polycrystalline phosphors, where an optimized content of Tm{sup 3+} is determined to be 1.0 mol. %. Upon the absorption of a visible photon around 473 nm, three NIR photons emitting at 1180, 1479, and 1800 nm can be obtained efficiently by the sequential three-step radiative transitions of Tm{sup 3+}. The underlying mechanisms are analyzed in terms of the steady and dynamic fluorescence spectra measurements. Internal quantum yield is calculated to be 161.8% as a theoretical value when luminescence quenching due to defect species can be overcome. In addition, the broadband ultraviolet (UV)-excited [VO{sub 4}]{sup 3−} can strongly sensitize the {sup 1}G{sub 4} level of Tm{sup 3+} in the wavelength range likely from 250 to 360 nm, greatly increasing the UV photo-response and NIR fluorescent intensity of Tm{sup 3+}. The further development of this broadband three-photon NIR QC material would explore the new route to improve the photo-response of novel photoelectronic devices, particularly in 250–360 nm.
Authors:
; ; ; ; ;  [1]
  1. State Key Laboratory of Luminescence Materials and Devices, and Institute of Optical Communication Materials, South China University of Technology, Guangzhou 510641 (China)
Publication Date:
OSTI Identifier:
22258721
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 114; Journal Issue: 20; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ABSORPTION; CRYSTAL DEFECTS; CUTTING; DOPED MATERIALS; FLUORESCENCE; FLUORESCENCE SPECTROSCOPY; PHOTONS; POLYCRYSTALS; THULIUM IONS; ULTRAVIOLET RADIATION; VANADATES