skip to main content

SciTech ConnectSciTech Connect

Title: Controlled synthesis of nickel ferrite nanocrystals with tunable properties using a novel induction thermal plasma method

Nickel ferrite spinel nanopowders were synthesised using a solution spray radio-frequency inductively coupled plasma reactor over a wide range of compositions (Ni{sub x}Fe{sub 3-x}O{sub 4}, x ≤ 1), with metastable powders produced for x = 0, 0.25, and 0.5. X-ray fluorescence and X-ray diffraction coupled to Rietveld refinement show that this synthesis technique offers an excellent level of control over both the chemical and crystallographic composition of the nanopowder through the control of the input Fe/Ni ratio. The technique produces highly crystalline nanopowders without the need for post-synthesis annealing. A bulk Fe/Ni ratio ≥2 yields a pure spinel Ni{sub x}Fe{sub 3-x}O{sub 4} phase, whereas Fe/Ni ratio <2 results in the excess Ni partitioning to a secondary bunsenite (Ni{sub x},Fe{sub 1-x})O phase. Morphological analysis using transmission electron microscopy shows that two types of particles are produced in different parts of the reactor: a highly faceted powder with the truncated octahedron morphology and a smaller-sized random agglomerate. The faceted particles have a log-normal particle size distribution, with an average size of about 30 nm while the agglomerates have a characteristic length of ∼3–5 nm.
Authors:
;  [1]
  1. Department of Chemical Engineering and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1 (Canada)
Publication Date:
OSTI Identifier:
22258719
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 114; Journal Issue: 21; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; 36 MATERIALS SCIENCE; CRYSTALLOGRAPHY; FERRITE; FERRITES; FLUORESCENCE; MATHEMATICAL SOLUTIONS; MORPHOLOGY; NANOSTRUCTURES; NICKEL; POWDERS; RADIOWAVE RADIATION; SPINELS; SYNTHESIS; TRANSMISSION ELECTRON MICROSCOPY; X-RAY DIFFRACTION