skip to main content

SciTech ConnectSciTech Connect

Title: Half-metallicity and stability of the rock salt BaC and SrC (111) surfaces: A density functional study

The electronic structure and magnetic properties of relaxed (111) surfaces of the alkaline-earth monocarbides BaC and SrC in the stable rock salt structure, are calculated on the basis of first principle density functional theory within the framework of self-consistent field plane wave pseudo-potential method, using the generalized gradient approximation for the exchange-correlation functional. The results of this study reveal that the C-terminated (111) surfaces retain the bulk half-metallic property in both BaC and SrC. The half-metallicity of the C-terminated BaC surface is found to be more robust compared to the bulk BaC due to the larger half-metallic energy gap. In contrast, the half-metallic energy gap of the C-terminated SrC surface is found to be smaller than that of the bulk. The Ba-terminated surface of BaC and the Sr-terminated surface of SrC, however, lose their bulk half-metallicity due to the formation of surface states in the majority spin band gap. The calculations also show that the atomic magnetic moments at the half-metallic C-terminated surfaces in both BaC and SrC increase considerably with respect to the corresponding bulk values, which is explained in terms of an increase in the number of unpaired 2p electrons of the carbon atom at the surface. Wemore » also discuss the stability of the surfaces via the calculated bulk formation energies. The bulk formation energies for both BaC and SrC in the rock salt structure are found to be positive, which indicate that the surfaces are not stable at normal pressure and temperature conditions, and non-equilibrium growth techniques may be required for the realization of BaC and SrC thin films.« less
Authors:
; ;  [1]
  1. Department of Physics, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of)
Publication Date:
OSTI Identifier:
22258704
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 114; Journal Issue: 21; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 74 ATOMIC AND MOLECULAR PHYSICS; BARIUM CARBIDES; DENSITY FUNCTIONAL METHOD; ELECTRONIC STRUCTURE; ENERGY GAP; FORMATION HEAT; MAGNETIC MOMENTS; MAGNETIC PROPERTIES; SALT DEPOSITS; SELF-CONSISTENT FIELD; STABILITY; STRONTIUM CARBIDES; THIN FILMS; WAVE PROPAGATION