skip to main content

SciTech ConnectSciTech Connect

Title: Degradation of transparent conductive properties of undoped ZnO and Ga-doped ZnO films left in atmospheric ambient for several years and trials to recover initial conductance

This study evaluated the long-term stability of the transparent conductive properties of undoped ZnO and Ga-doped ZnO (GZO) films that had been left in an atmospheric ambient environment for 5 to 6 yr. When ZnO films are stored in a clean room with a controlled temperature and humidity of 23 °C and 45%, respectively, throughout the year, the increases in sheet resistance are less than 5% of their initial value. The ZnO films stored in a non-air-conditioned laboratory room, whose temperature varies between 5 and 35 °C and humidity varies between 30% and 70% per year, suffer from increases in the sheet resistance by almost 13%, which is associated with a slight rise in the near-infrared transmittance level. Postannealing of these degraded ZnO films at 150–200 °C recovers the initial conductance by removing the H{sub 2}O molecules that have penetrated the film. One hour of irradiation with electron cyclotron resonance Ar plasma effectively restores the conductive surfaces while maintaining a temperature below 70 °C. The GZO films containing a few weight percent of Ga{sub 2}O{sub 3} are stable even when stored in a non-air-conditioned laboratory room, with changes in the sheet resistance of less than 3%. The GZO films with a Ga{sub 2}O{sub 3}more » content larger than 10 wt. %, however, exhibit serious degradation probably due to the strong affinity of segregated Ga{sub 2}O{sub 3} domains with H{sub 2}O vapor molecules. Neither postannealing nor Ar plasma irradiation can recover the initial sheet resistance of these GZO films.« less
Authors:
 [1]
  1. NTT Microsystem Integration Laboratories, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198 (Japan)
Publication Date:
OSTI Identifier:
22258640
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Vacuum Science and Technology. A, Vacuum, Surfaces and Films; Journal Volume: 32; Journal Issue: 2; Other Information: (c) 2014 American Vacuum Society; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; AIR; DOPED MATERIALS; ELECTRON CYCLOTRON-RESONANCE; FILMS; GALLIUM; GALLIUM OXIDES; HUMIDITY; IRRADIATION; PLASMA; WATER; WATER VAPOR; ZINC OXIDES