skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High thermoelectric performance in the multi-valley electronic system Zr{sub 3}Ni{sub 3−x}Co{sub x}Sb{sub 4} and the high-mobility Zr{sub 3}Ni{sub 3−x}Cu{sub x}Sb{sub 4}

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.4869573· OSTI ID:22258585

We report synthesis and thermoelectric performance of the p-type Zr{sub 3}Ni{sub 3−x}Co{sub x}Sb{sub 4} and the n-type Zr{sub 3}Ni{sub 3−x}Cu{sub x}Sb{sub 4}, which are derived from the same parent semiconductor Zr{sub 3}Ni{sub 3}Sb{sub 4}. We found a high thermoelectric performance for both the p-type compound (the figure-of-merit ZT is 0.52 at 760 K) and the n-type compound (ZT = 0.41 at 670 K). ZT of the p-type compound exceeded the value of the p-type half-Heusler compounds consisting of similar elements. The Hall-coefficient measurements indicate that the high ZT in the n-type compounds is a consequence of the high electron mobility of 52.4 cm{sup 2}/Vs. In contrast, the p-type compounds showed higher ZT in spite of much lower mobility. We discuss the mechanism for the high ZT in the p-type compound from the viewpoint of the multi-valley band structure.

OSTI ID:
22258585
Journal Information:
Applied Physics Letters, Vol. 104, Issue 12; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-6951
Country of Publication:
United States
Language:
English