skip to main content

SciTech ConnectSciTech Connect

Title: High thermoelectric performance in the multi-valley electronic system Zr{sub 3}Ni{sub 3−x}Co{sub x}Sb{sub 4} and the high-mobility Zr{sub 3}Ni{sub 3−x}Cu{sub x}Sb{sub 4}

We report synthesis and thermoelectric performance of the p-type Zr{sub 3}Ni{sub 3−x}Co{sub x}Sb{sub 4} and the n-type Zr{sub 3}Ni{sub 3−x}Cu{sub x}Sb{sub 4}, which are derived from the same parent semiconductor Zr{sub 3}Ni{sub 3}Sb{sub 4}. We found a high thermoelectric performance for both the p-type compound (the figure-of-merit ZT is 0.52 at 760 K) and the n-type compound (ZT = 0.41 at 670 K). ZT of the p-type compound exceeded the value of the p-type half-Heusler compounds consisting of similar elements. The Hall-coefficient measurements indicate that the high ZT in the n-type compounds is a consequence of the high electron mobility of 52.4 cm{sup 2}/Vs. In contrast, the p-type compounds showed higher ZT in spite of much lower mobility. We discuss the mechanism for the high ZT in the p-type compound from the viewpoint of the multi-valley band structure.
Authors:
; ; ; ; ;  [1]
  1. Advanced Technology Research Laboratories, Panasonic Corporation, Seika, Kyoto 619-0237 (Japan)
Publication Date:
OSTI Identifier:
22258585
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 104; Journal Issue: 12; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 36 MATERIALS SCIENCE; ANTIMONY; COBALT; ELECTRON MOBILITY; NICKEL; PERFORMANCE; SEMICONDUCTOR MATERIALS; SYNTHESIS; THERMOELECTRIC PROPERTIES; ZIRCONIUM