skip to main content

Title: Surface plasmon polaritons in a topological insulator embedded in an optical cavity

Very recently, the surface plasmons in a topological insulator (TI) have been experimentally observed by exciting these collective modes with polarized light [P. Di Pietro, M. Ortolani, O. Limaj, A. Di Gaspare, V. Giliberti, F. Giorgianni, M. Brahlek, N. Bansal, N. Koirala, S. Oh, P. Calvani, and S. Lupi, Nat. Nanotechnol. 8, 556 (2013)]. Motivated by this experimental work, here we present a theoretical study on the surface plasmon polaritons (SPPs) induced by plasmon-photon interactions in a TI thin film embedded in an optical cavity. It is found that the frequencies of SPP modes are within the terahertz (THz) bandwidth and can be tuned effectively by adjusting the surface electron density and/or the optical cavity length. Since the surface electron density can be well controlled by the gate-voltage applied perpendicular to the TI surface, our theoretical results indicate that gated TI thin films may have potential applications in the electrically tunable THz plasmonic devices.
Authors:
 [1] ;  [1] ;  [2]
  1. Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China)
  2. (China)
Publication Date:
OSTI Identifier:
22257821
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 104; Journal Issue: 11; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ELECTRON DENSITY; PHOTONS; PLASMONS; POLARONS; SURFACES; THIN FILMS; TOPOLOGY