skip to main content

SciTech ConnectSciTech Connect

Title: Enhanced electromechanical coupling in Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-PbTiO{sub 3} <001>{sub C} radially textured cylinders

We demonstrate Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-PbTiO{sub 3} cylinders with ∼98% <100>{sub C} texture along the radial direction. A giant enhancement in the magnitude of electromechanical coupling factor (k{sub 31} = k{sub h} = 0.60, and k{sub l} = 0.7) was obtained for textured cylinder, and d{sub 31} × g{sub 31} was measured to be 6766 × 10{sup −15} m{sup 2}/N which is 3–6 times higher than that of commercial Pb(Zr,Ti)O{sub 3} compositions. The crystallographic grain orientation in the textured cylinder was visualized by electron backscatter diffraction, and the domain structure was characterized by piezoresponse force microscopy. Using these results, we explain the mechanism for this enhanced performance of radially textured piezoelectrics.
Authors:
; ;  [1]
  1. Bio-inspired Materials and Devices Laboratory (BMDL), Center of Energy Harvesting Materials and Systems, Virginia Tech, Blacksburg, Virginia 24061 (United States)
Publication Date:
OSTI Identifier:
22257757
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 104; Journal Issue: 1; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; COUPLING; CRYSTALLOGRAPHY; CYLINDERS; DIFFRACTION; DOMAIN STRUCTURE; ELECTRONS; GRAIN ORIENTATION; LEAD COMPOUNDS; PIEZOELECTRICITY; TEXTURE; TITANATES