skip to main content

SciTech ConnectSciTech Connect

Title: Direct numerical simulation of electrokinetic instability and transition to chaotic motion

A new type of instability—electrokinetic instability—and an unusual transition to chaotic motion near a charge-selective surface (semiselective electric membrane, electrode, or system of micro-/nanochannels) was studied by the numerical integration of the Nernst-Planck-Poisson-Stokes system and a weakly nonlinear analysis near the threshold of instability. A special finite-difference method was used for the space discretization along with a semi-implicit 31/3 -step Runge-Kutta scheme for the integration in time. Two kinds of initial conditions were considered: (a) white-noise initial conditions to mimic “room disturbances” and subsequent natural evolution of the solution, and (b) an artificial monochromatic ion distribution with a fixed wave number to simulate regular wave patterns. The results were studied from the viewpoint of hydrodynamic stability and bifurcation theory. The threshold of electroconvective movement was found by the linear spectral stability theory, the results of which were confirmed by numerical simulation of the entire system. Our weakly nonlinear analysis and numerical integration of the entire system predict possibility of both kinds of bifurcations at the critical point, supercritical and subcritical, depending on the system parameters. The following regimes, which replace each other as the potential drop between the selective surfaces increases, were obtained: one-dimensional steady solution, two-dimensional steady electroconvective vorticesmore » (stationary point in a proper phase space), unsteady vortices aperiodically changing their parameters (homoclinic contour), periodic motion (limit cycle), and chaotic motion. The transition to chaotic motion does not include Hopf bifurcation. The numerical resolution of the thin concentration polarization layer showed spike-like charge profiles along the surface, which could be, depending on the regime, either steady or aperiodically coalescent. The numerical investigation confirmed the experimentally observed absence of regular (near-sinusoidal) oscillations for the overlimiting regimes. There is a qualitative agreement of the experimental and the theoretical values of the threshold of instability, the dominant size of the observed coherent structures, and the experimental and theoretical volt–current characteristics.« less
Authors:
 [1] ;  [2] ;  [2] ;  [3] ;  [3] ;  [2]
  1. Laboratory of Micro- and Nanofluidics, Moscow State University, Moscow 119192 (Russian Federation)
  2. (Russian Federation)
  3. Institute of Mechanics, Moscow State University, Moscow 117192 (Russian Federation)
Publication Date:
OSTI Identifier:
22257164
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of Fluids (1994); Journal Volume: 25; Journal Issue: 12; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; BIFURCATION; CHAOS THEORY; COMPUTERIZED SIMULATION; FINITE DIFFERENCE METHOD; INSTABILITY; LIMIT CYCLE; MONOCHROMATIC RADIATION; PHASE SPACE; VORTICES