skip to main content

Title: On the valve nature of a monolayer of aligned molecular magnets in tunneling spin-polarized electrons: Towards organic molecular spintronics

We form a monolayer of magnetic organic molecules and immobilize their moments pointing either upwards or downwards with respect to the substrate through an electrostatic-binding process. Such a monolayer is probed with a scanning tunneling microscope tip, which is also magnetized with the magnetization vector pointing towards (or away from) apex of the tip. From spin-polarized tunneling current, we show that the current was higher when magnetization vectors of the tip and molecules were parallel as compared to that when they were anti-parallel. We show that for tunneling of spin-polarized electrons, aligned organic molecular magnets can act as a valve.
Authors:
;  [1]
  1. Department of Solid State Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)
Publication Date:
OSTI Identifier:
22257149
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 104; Journal Issue: 1; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ELECTRONS; MAGNETS; MOLECULES; SCANNING TUNNELING MICROSCOPY; SPIN ORIENTATION; TUNNEL EFFECT