skip to main content

Title: Valence and conduction band offsets at amorphous hexagonal boron nitride interfaces with silicon network dielectrics

To facilitate the design of heterostructure devices employing hexagonal/sp{sup 2} boron nitride, x-ray photoelectron spectroscopy has been utilized in conjunction with prior reflection electron energy loss spectroscopy measurements to determine the valence and conduction band offsets (VBOs and CBOs) present at interfaces formed between amorphous hydrogenated sp{sup 2} boron nitride (a-BN:H) and various low- and high-dielectric-constant (k) amorphous hydrogenated silicon network dielectric materials (a-SiX:H, X = O, N, C). For a-BN:H interfaces formed with wide-band-gap a-SiO{sub 2} and low-k a-SiOC:H materials (E{sub g} ≅ 8.2−8.8 eV), a type I band alignment was observed where the a-BN:H band gap (E{sub g} = 5.5 ± 0.2 eV) was bracketed by a relatively large VBO and CBO of ∼1.9 and 1.2 eV, respectively. Similarly, a type I alignment was observed between a-BN:H and high-k a-SiC:H where the a-SiC:H band gap (E{sub g} = 2.6 ± 0.2 eV) was bracketed by a-BN:H with VBO and CBO of 1.0 ± 0.1 and 1.9 ± 0.2 eV, respectively. The addition of O or N to a-SiC:H was observed to decrease the VBO and increase the CBO with a-BN:H. For high-k a-SiN:H (E{sub g} = 3.3 ± 0.2 eV) interfaces with a-BN:H, a slightly staggered type II band alignment was observed with VBO and CBO of 0.1 ± 0.1 and −2.3 ± 0.2 eV, respectively. The measured a-BN:H VBOs were found to be consistent with those deduced viamore » application of the commutative and transitive rules to VBOs reported for a-BN:H, a-SiC:H, a-SiN:H, and a-SiO{sub 2} interfaces with Si (100)« less
Authors:
; ; ; ;  [1] ; ; ;  [2] ;  [3]
  1. Logic Technology Development, Intel Corporation, Hillsboro, Oregon 97124 (United States)
  2. Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, Missouri 64110 (United States)
  3. Ocotillo Materials Laboratory, Intel Corporation, Chandler, Arizona 85248 (United States)
Publication Date:
OSTI Identifier:
22257054
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 104; Journal Issue: 10; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; BORON NITRIDES; DIELECTRIC MATERIALS; ENERGY-LOSS SPECTROSCOPY; SILICON; SILICON CARBIDES; SILICON NITRIDES; SILICON OXIDES; X-RAY PHOTOELECTRON SPECTROSCOPY