skip to main content

Title: Statistical investigations on nitrogen-vacancy center creation

Quantum information technologies require networks of interacting defect bits. Color centers, especially the nitrogen vacancy (NV{sup −}) center in diamond, represent one promising avenue, toward the realisation of such devices. The most successful technique for creating NV{sup −} in diamond is ion implantation followed by annealing. Previous experiments have shown that shallow nitrogen implantation (<10 keV) results in NV{sup −} centers with a yield of 0.01%–0.1%. We investigate the influence of channeling effects during shallow implantation and statistical diffusion of vacancies using molecular dynamics and Monte Carlo simulation techniques. Energy barriers for the diffusion process were calculated using density functional theory. Our simulations show that 25% of the implanted nitrogens form a NV center, which is in good agreement with our experimental findings.
Authors:
; ; ;  [1] ; ;  [2] ; ; ;  [3] ;  [4] ;  [5] ; ;  [6]
  1. 3. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany)
  2. Institut für Theoretische und Angewandte Physik, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany)
  3. Institut für Quantenoptik, Universität Ulm, Albert-Einstein-Allee 11, 89081 Ulm (Germany)
  4. Japan Atomic Energy Agency, Takasaki, Gunma 370-1292 (Japan)
  5. Graduate School of Library, Information and Media Studies, University of Tsukuba, 1-2 Kasuga, Tsukuba, Ibaraki 305-8550 (Japan)
  6. Institut für Experimentelle Physik II, Linnéstrasse 5, 04103 Leipzig (Germany)
Publication Date:
OSTI Identifier:
22257017
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 104; Journal Issue: 1; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; COLOR CENTERS; COMPUTERIZED SIMULATION; DEFECTS; DENSITY FUNCTIONAL METHOD; MOLECULAR DYNAMICS METHOD; MONTE CARLO METHOD; NITROGEN; QUANTUM INFORMATION