skip to main content

SciTech ConnectSciTech Connect

Title: Adsorption of formic acid on rutile TiO{sub 2} (110) revisited: An infrared reflection-absorption spectroscopy and density functional theory study

Formic acid (HCOOH) adsorption on rutile TiO{sub 2} (110) has been studied by s- and p-polarized infrared reflection-absorption spectroscopy (IRRAS) and spin-polarized density functional theory together with Hubbard U contributions (DFT+U) calculations. To compare with IRRAS spectra, the results from the DFT+U calculations were used to simulate IR spectra by employing a three-layer model, where the adsorbate layer was modelled using Lorentz oscillators with calculated dielectric constants. To account for the experimental observations, four possible formate adsorption geometries were calculated, describing both the perfect (110) surface, and surfaces with defects; either O vacancies or hydroxyls. The majority species seen in IRRAS was confirmed to be the bridging bidentate formate species with associated symmetric and asymmetric frequencies of the ν(OCO) modes measured to be at 1359 cm{sup −1} and 1534 cm{sup −1}, respectively. The in-plane δ(C–H) wagging mode of this species couples to both the tangential and the normal component of the incident p-polarized light, which results in absorption and emission bands at 1374 cm{sup −1} and 1388 cm{sup −1}. IRRAS spectra measured on surfaces prepared to be either reduced, stoichiometric, or to contain surplus O adatoms, were found to be very similar. By comparisons with computed spectra, it is proposedmore » that in our experiments, formate binds as a minority species to an in-plane Ti{sub 5c} atom and a hydroxyl, rather than to O vacancy sites, the latter to a large extent being healed even at our UHV conditions. Excellent agreement between calculated and experimental IRRAS spectra is obtained. The results emphasize the importance of protonation and reactive surface hydroxyls – even under UHV conditions – as reactive sites in e.g., catalytic applications.« less
Authors:
;  [1] ; ;  [2]
  1. Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, P.O. Box 534, SE-751 21 Uppsala (Sweden)
  2. Department of Chemistry, The Ångström Laboratory, Uppsala University, P. O. Box 538, SE-751 21 Uppsala (Sweden)
Publication Date:
OSTI Identifier:
22255271
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 140; Journal Issue: 3; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ABSORPTION; ABSORPTION SPECTROSCOPY; ADSORPTION; DENSITY FUNCTIONAL METHOD; EMISSION; FORMATES; FORMIC ACID; HYDROXIDES; INFRARED SPECTRA; PERMITTIVITY; RUTILE; SURFACES; TITANIUM OXIDES