skip to main content

SciTech ConnectSciTech Connect

Title: Vibronic structure of VO{sub 2} probed by slow photoelectron velocity-map imaging spectroscopy

We report high-resolution anion photoelectron spectra of vanadium dioxide (VO{sub 2}{sup −}) obtained by slow electron velocity-map imaging of trapped and cryogenically cooled anions. Vibrationally resolved spectra are obtained for photodetachment to the first three neutral electronic states, giving an electron affinity of 1.8357(5) eV for the X-tilde{sup 2} A{sub 1} ground state and term energies of 0.1845(8) eV and 0.8130(5) eV for the A-tilde{sup 2}B{sub 1} and B-tilde{sup 2}A{sub 1} excited states, respectively. The vibrational fundamentals ν{sub 1} and ν{sub 2} are obtained for all three states. Experimental assignments are confirmed by energies from electronic structure calculations and Franck-Condon spectral simulations. These simulations support assigning the anion ground state as the X-tilde{sup 3}B{sub 1} state. With this assignment, photodetachment to the B-tilde{sup 2}A{sub 1} state involves a nominally forbidden two-electron transition, suggesting extensive configuration interaction in neutral VO{sub 2}.
Authors:
; ;  [1]
  1. Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)
Publication Date:
OSTI Identifier:
22255265
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 140; Journal Issue: 3; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ANIONS; ELECTRONIC STRUCTURE; EXCITED STATES; GROUND STATES; PHOTOELECTRON SPECTROSCOPY; SIMULATION; SPECTRA; VANADIUM OXIDES