skip to main content

SciTech ConnectSciTech Connect

Title: Ab initio molecular dynamics simulations reveal localization and time evolution dynamics of an excess electron in heterogeneous CO{sub 2}–H{sub 2}O systems

In view of the important implications of excess electrons (EEs) interacting with CO{sub 2}–H{sub 2}O clusters in many fields, using ab initio molecular dynamics simulation technique, we reveal the structures and dynamics of an EE associated with its localization and subsequent time evolution in heterogeneous CO{sub 2}–H{sub 2}O mixed media. Our results indicate that although hydration can increase the electron-binding ability of a CO{sub 2} molecule, it only plays an assisting role. Instead, it is the bending vibrations that play the major role in localizing the EE. Due to enhanced attraction of CO{sub 2}, an EE can stably reside in the empty, low-lying π{sup *} orbital of a CO{sub 2} molecule via a localization process arising from its initial binding state. The localization is completed within a few tens of femtoseconds. After EE trapping, the ∠OCO angle of the core CO{sub 2}{sup −} oscillates in the range of 127°∼142°, with an oscillation period of about 48 fs. The corresponding vertical detachment energy of the EE is about 4.0 eV, which indicates extreme stability of such a CO{sub 2}-bound solvated EE in [CO{sub 2}(H{sub 2}O){sub n}]{sup −} systems. Interestingly, hydration occurs not only on the O atoms of the core CO{submore » 2}{sup −} through formation of O⋯H–O H–bond(s), but also on the C atom, through formation of a C⋯H–O H–bond. In the latter binding mode, the EE cloud exhibits considerable penetration to the solvent water molecules, and its IR characteristic peak is relatively red-shifted compared with the former. Hydration on the C site can increase the EE distribution at the C atom and thus reduce the C⋯H distance in the C⋯H–O H–bonds, and vice versa. The number of water molecules associated with the CO{sub 2}{sup −} anion in the first hydration shell is about 4∼7. No dimer-core (C{sub 2}O{sub 4}{sup −}) and core-switching were observed in the double CO{sub 2} aqueous media. This work provides molecular dynamics insights into the localization and time evolution dynamics of an EE in heterogeneous CO{sub 2}–H{sub 2}O media.« less
Authors:
; ; ; ;  [1]
  1. School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 (China)
Publication Date:
OSTI Identifier:
22255202
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 140; Journal Issue: 4; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ANIONS; CARBON DIOXIDE; ELECTRONS; HYDRATION; MIXED SOLVENTS; MOLECULAR DYNAMICS METHOD; PEAKS; SIMULATION; STABILITY