skip to main content

SciTech ConnectSciTech Connect

Title: The hydrogen abstraction reaction O({sup 3}P) + CH{sub 4}: A new analytical potential energy surface based on fit to ab initio calculations

Based exclusively on high-level ab initio calculations, a new full-dimensional analytical potential energy surface (PES-2014) for the gas-phase reaction of hydrogen abstraction from methane by an oxygen atom is developed. The ab initio information employed in the fit includes properties (equilibrium geometries, relative energies, and vibrational frequencies) of the reactants, products, saddle point, points on the reaction path, and points on the reaction swath, taking especial caution respecting the location and characterization of the intermediate complexes in the entrance and exit channels. By comparing with the reference results we show that the resulting PES-2014 reproduces reasonably well the whole set of ab initio data used in the fitting, obtained at the CCSD(T) = FULL/aug-cc-pVQZ//CCSD(T) = FC/cc-pVTZ single point level, which represents a severe test of the new surface. As a first application, on this analytical surface we perform an extensive dynamics study using quasi-classical trajectory calculations, comparing the results with recent experimental and theoretical data. The excitation function increases with energy (concave-up) reproducing experimental and theoretical information, although our values are somewhat larger. The OH rotovibrational distribution is cold in agreement with experiment. Finally, our results reproduce experimental backward scattering distribution, associated to a rebound mechanism. These results lend confidencemore » to the accuracy of the new surface, which substantially improves the results obtained with our previous surface (PES-2000) for the same system.« less
Authors:
; ;  [1]
  1. Departamento de Química Física, Universidad de Extremadura, 06071 Badajoz (Spain)
Publication Date:
OSTI Identifier:
22255121
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 140; Journal Issue: 6; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ACCURACY; EXCITATION FUNCTIONS; HYDROGEN; METHANE; POTENTIAL ENERGY; SURFACES