skip to main content

Title: Multi-reference vibration correlation methods

State-specific vibration correlation methods beyond the vibrational multi-configuration self-consistent field (VMCSCF) approximation have been developed, which allow for the accurate calculation of state energies for systems suffering from strong anharmonic resonances. Both variational multi-reference configuration interaction approaches and an implementation of approximate 2nd order vibrational multi-reference perturbation theory are presented. The variational approach can be significantly accelerated by a configuration selection scheme, which leads to negligible deviations in the final results. Relaxation effects due to the partitioning of the correlation space and the performance of a VMCSCF modal basis in contrast to a standard modal basis obtained from vibrational self-consistent field theory have been investigated in detail. Benchmark calculations based on high-level potentials are provided for the propargyl cation and cis-diazene.
Authors:
;  [1]
  1. Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany)
Publication Date:
OSTI Identifier:
22255117
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 140; Journal Issue: 6; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS; CATIONS; PARTITION; PERTURBATION THEORY; RELAXATION; SELF-CONSISTENT FIELD