skip to main content

SciTech ConnectSciTech Connect

Title: Semi-exact concentric atomic density fitting: Reduced cost and increased accuracy compared to standard density fitting

A local density fitting scheme is considered in which atomic orbital (AO) products are approximated using only auxiliary AOs located on one of the nuclei in that product. The possibility of variational collapse to an unphysical “attractive electron” state that can affect such density fitting [P. Merlot, T. Kjærgaard, T. Helgaker, R. Lindh, F. Aquilante, S. Reine, and T. B. Pedersen, J. Comput. Chem. 34, 1486 (2013)] is alleviated by including atom-wise semidiagonal integrals exactly. Our approach leads to a significant decrease in the computational cost of density fitting for Hartree–Fock theory while still producing results with errors 2–5 times smaller than standard, nonlocal density fitting. Our method allows for large Hartree–Fock and density functional theory computations with exact exchange to be carried out efficiently on large molecules, which we demonstrate by benchmarking our method on 200 of the most widely used prescription drug molecules. Our new fitting scheme leads to smooth and artifact-free potential energy surfaces and the possibility of relatively simple analytic gradients.
Authors:
 [1] ;  [2] ;  [1] ;  [3]
  1. Center for Computational Quantum Chemistry, University of Georgia, 1004 Cedar St., Athens, Georgia 30602 (United States)
  2. (United States)
  3. Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061 (United States)
Publication Date:
OSTI Identifier:
22255116
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 140; Journal Issue: 6; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ACCURACY; DENSITY; DENSITY FUNCTIONAL METHOD; POTENTIAL ENERGY