skip to main content

Title: Bi-harmonic cantilever design for improved measurement sensitivity in tapping-mode atomic force microscopy

This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.
Authors:
;  [1]
  1. Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, Missouri 65401 (United States)
Publication Date:
OSTI Identifier:
22254945
Resource Type:
Journal Article
Resource Relation:
Journal Name: Review of Scientific Instruments; Journal Volume: 85; Journal Issue: 4; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; ATOMIC FORCE MICROSCOPY; HARMONICS; IMAGES; ION BEAMS; MEASURING METHODS; MILLING; SENSITIVITY; TOPOGRAPHY; TRAJECTORIES