skip to main content

Title: A spatially resolved retarding field energy analyzer design suitable for uniformity analysis across the surface of a semiconductor wafer

A novel retarding field energy analyzer design capable of measuring the spatial uniformity of the ion energy and ion flux across the surface of a semiconductor wafer is presented. The design consists of 13 individual, compact-sized, analyzers, all of which are multiplexed and controlled by a single acquisition unit. The analyzers were tested to have less than 2% variability from unit to unit due to tight manufacturing tolerances. The main sensor assembly consists of a 300 mm disk to mimic a semiconductor wafer and the plasma sampling orifices of each sensor are flush with disk surface. This device is placed directly on top of the rf biased electrode, at the wafer location, in an industrial capacitively coupled plasma reactor without the need for any modification to the electrode structure. The ion energy distribution, average ion energy, and average ion flux were measured at the 13 locations over the surface of the powered electrode to determine the degree of spatial nonuniformity. The ion energy and ion flux are shown to vary by approximately 20% and 5%, respectively, across the surface of the electrode for the range of conditions investigated in this study.
Authors:
 [1] ;  [2] ; ;  [1] ; ;  [3]
  1. Impedans Ltd., Unit 8 Woodford Court, Woodford Business Park, Santry, Dublin 17 (Ireland)
  2. (Ireland)
  3. National Centre for Plasma Science and Technology, Dublin City University, Glasnevin, Dublin 9 (Ireland)
Publication Date:
OSTI Identifier:
22254929
Resource Type:
Journal Article
Resource Relation:
Journal Name: Review of Scientific Instruments; Journal Volume: 85; Journal Issue: 4; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; APPROXIMATIONS; DESIGN; ELECTRODES; ENERGY SPECTRA; EQUIPMENT; MANUFACTURING; ORIFICES; PLASMA; SEMICONDUCTOR MATERIALS; SENSORS